1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
华东师大2011课标版《作已知角的平分线》优质课PPT课件下载
欧几里得
高斯
柏拉图(公元前427-前347年)
林德曼(德,1852-1939)
在历史上最先明确提出尺规限制的是伊诺皮迪斯。他发现以下作图法:在已知直线的已知点上作一角与已知角相等。这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题。在这以前,许多作图题是不限工具的。伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中。
尺规作图是起源于古希腊的数学课题
古希腊人说的直尺,指的是没有刻度的直尺。他们在大量的画图经历中感觉到,似乎只用直尺、圆规这两种作图工具就能画出各种满足要求的几何图形,因而,古希腊人就规定,作图时只能有限次地使用直尺和圆规这两种工具来进行,并称之为尺规作图法。 漫长的作图实践,按尺规作图的要求,人们作出了大量符合给定条件的图形,即便一些较为复杂的作图问题,独具匠心地经过有限步骤也能作出来。到了大约公元前6世纪到4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题。
尺规作图是起源于古希腊的数学课题
三等分角问题:将任一个给定的角三等分。 立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。 化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。
尺规作图是起源于古希腊的数学课题
这就是著名的古代几何作图三大难题,它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。
从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。
尺规作图是起源于古希腊的数学课题
什么是尺规作图?
在几何里,把限定用直尺和圆规来画图,称为尺规作图.最基本,最常用的尺规作图,通常称基本作图.
☆以前学过的“作一条线段等于已知线段”,就是一种基本作图.
圆规与直尺的限制!
直尺没有刻度,无限长。只可以用它来将两个点连在一起,不可以在上面画刻度。
圆规可以开至无限宽,但上面亦不能有刻度,它只可以拉开成你需要的长度。
1.作一条线段等于已知线段;
2.作一个角等于已知角;
3.作已知角的平分线.
4.经过一已知点作已知直线的垂线