1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《回顾与思考》精品PPT课件优质课下载
步骤
把一个多项式化成几个整式的积的形式,叫做多项式的分解因式。也叫做因式分解。
即:一个多项式 →几个整式的积
注:必须分解到每个多项式因式不能再分解为止
(二)分解因式的方法:
(1)、提取公因式法
(2)、运用公式法
如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式。这种分解因式的方法叫做提公因式法。
例题:把下列各式分解因式
① 6x3y2-9x2y3+3x2y2 ②p(y-x)-q(x-y)
③ (x-y)2-y(y-x)2
(1)、提公因式法:
即: ma + mb + mc = m(a+b+c)
解:原式=3x2y2(2x-3y+1)
解:原式=p(y-x)+q(y-x)
=(y-x)(p+q)
解:原式=(x-y) 2(1-y)
(2)运用公式法:
① a2-b2=(a+b)(a-b) [ 平方差公式 ]
② a2 +2ab+ b2 =(a+b)2 [ 完全平方公式 ]
a2 -2ab+ b2 =(a-b)2 [ 完全平方公式 ]
运用公式法中主要使用的公式有如下几个:
例题:把下列各式分解因式
①x2-4y2 ② 9x2-6x+1
解:原式= x2-(2y)2