师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步苏教版必修21.2.4 平面与平面的位置关系下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

必修2《1.2.4平面与平面的位置关系》精品PPT课件优质课下载

判断或证明线面平行的常用方法

(1)利用线面平行的定义(无公共点);

(2)利用线面平行的判定定理(a?α,b?α,a∥b?a∥α);

(3)利用面面平行的性质定理(α∥β,a?α?a∥β);

(4)利用面面平行的性质(α∥β,a?α,a?β,a∥α?a∥β).

思维升华

证明面面平行的方法

(1)面面平行的定义;

(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;

(3)利用垂直于同一条直线的两个平面平行;

(4)两个平面同时平行于第三个平面,那么这两个平面平行;

(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.

思维升华

证明线面垂直的常用方法及关键

(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α?b⊥α);③面面平行的性质(a⊥α,α∥β?a⊥β);④面面垂直的性质.

(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.

思维升华

(1)判定面面垂直的方法

①面面垂直的定义;

②面面垂直的判定定理(a⊥β,a?α?α⊥β).

(2)在已知平面垂直时,一般要用性质定理进行转化.

在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.

思维升华

命题点4 面面垂直的证明

例5 如图所示,在正三棱柱ABC—A1B1C1中,E为BB1的中点,