1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2003课标版《3.3全称命题与特称命题的否定》新课标PPT课件优质课下载
单位:
3.3 全称命题与特称命题的否定
老师问同学上节课“所有的同学都去阅览室了吗”,同学回答“有两名同学没去”,“不是所有的同学都去阅览室”。
1.通过生活和数学中的实例,理解对含有一个量词的命题的否定的意义.
2.通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律. (重点)
3.正确的对含有一个量词的命题进行否定.(难点)
探究点1 全称命题的否定
命题:“所有的平行四边形是矩形”(假命题)
“不是所有的平行四边形是矩形”
“至少存在一个平行四边形,它不是矩形”
“存在一个平行四边形不是矩形”(真命题)
思考1 试着写出下列命题的否定:
思考2:对于下列命题:
(1)所有的奇数都是素数.
(2)数列1,2,3,4,5 的每一项都是偶数.
(3)集合﹛-2,-1,0,1,2﹜中的数都大于0.
想一想:判断上述命题的真假,如何进行说明?
提示:
(1)假命题,只需指出“有一个奇数不是素数”即可.
(2)假命题,只需说明“数列1,2,3,4,5…中有一项不是偶数”即可.
(3)假命题,只需说明“集合﹛-2,-1,0,1,2﹜中有一个数不大于0”即可.
可见,要说明一个全称命题是错误的,只需找出一个反例就可以了.实际上是要说明这个全称命题的否定是正确的.不难发现全称命题的否定是特称命题。
含有一个量词的全称命题的否定,有下面的结论:
(1)全称量词变存在量词.
(2)再否定命题的结论.