1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教A版2003课标版《1.3.2奇偶性》公开课PPT课件优质课下载
绕某点旋转 ,能够与另一图形重合)
观察下图,思考并讨论以下问题:
(1) 这两个函数图象有什么共同特征吗?
(2) 相应的两个函数值对应表是如何体现这些特征的?
f(-3)=9=f(3) f(-2)=4=f(2) f(-1)=1=f(1)
f(-3)=3=f(3) f(-2)=2=f(2) f(-1)=1=f(1)
f(x)=x2
f(x)=|x|
实际上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x),这时我们称函数y=x2为偶函数.
1.偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
例如,函数 都是偶函数,它们的图象分别如下图(1)、(2)所示.
定义:一般地对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。
问题1:研究函数优先考虑定义域,偶函数的定义域有什么要求?
(定义域关于原点对称)
问题2:为什么强调任意和都有?
(说明具有一般性,避免特殊性)
问题3:偶函数的图像有什么特点?
(关于y轴对称)
f(x)为偶函数 f(x)的图像关于y轴对称
问题4:如何判断一个函数是偶函数?
1 形----函数图像关于y轴对称(图像容易画出的函数)
2数----利用定义
(1)首先确定函数的定义域,并判断其定义域是否关于原点对称
(2) 确定f(x)于f(-x)的关系