1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修2《习题2.3》精品PPT课件优质课下载
求证:(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
证明 (1)由题意知,E为B1C的中点,
又D为AB1的中点,因此DE∥AC.
又因为DE?平面AA1C1C,AC?平面AA1C1C,
所以DE∥平面AA1C1C.
(2)因为棱柱ABCA1B1C1是直三棱柱,
所以CC1⊥平面ABC.
因为AC?平面ABC,所以AC⊥CC1.
又因为AC⊥BC,CC1?平面BCC1B1,
BC?平面BCC1B1,BC∩CC1=C,
所以AC⊥平面BCC1B1.
又因为BC1?平面BCC1B1,
所以BC1⊥AC.
因为BC=CC1,所以矩形BCC1B1是正方形,
因此BC1⊥B1C.
因为AC,B1C?平面B1AC,AC∩B1C=C,
所以BC1⊥平面B1AC.
又因为AB1?平面B1AC,所以BC1⊥AB1.
例2.(2016·江苏)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.
求证:(1)直线DE∥平面A1C1F
(2)平面B1DE⊥平面A1C1F.
证明 (1)由已知,DE为△ABC的中位线,
∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,
∴DE∥A1C1,