1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《3.3.1几何概型》精品PPT课件优质课下载
1.取一根长度为30cm的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于10cm的概率有多大?
从30cm的绳子上的任意一点剪断.
基本事件:
问题情境
2.射箭比赛的箭靶是涂有五个彩色的分环.从外向内为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m外射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率是多少?
射中靶面直径为122cm的大圆内的任意一点.
基本事件:
问题情境
2.射箭比赛的箭靶是涂有五个彩色的分环.从外向内为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m外射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率是多少?
这两个问题能否用古典概型的方法来求解呢?
问题情境
1.取一根长度为30cm的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于10cm的概率有多大?
对于问题1.记“剪得两段绳长都不小于10cm”为事件A. 把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度为 cm
所以剪得两段的长度都不小于10cm的概率为 .
对于问题2.记B={射中黄心},由于中靶点随机地落在面积为 的大圆内,而当中靶点落在面积为 的黄心内时,事件B发生。
因此射中黄心的概率是0.01
比赛靶面直径为122cm,
靶心直径为12.2cm.
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
在几何概型中,事件A的概率的计算公式如下:
几何概型的特点:
(1)试验中所有可能出现的结果(基本事件)有无限多个.
(2)每个基本事件出现的可能性相等.
古典概型与几何概型的区别:
古典概型