1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修3《复习参考题》最新PPT课件优质课下载
P(A)=构成事件A的测度 / 试验的
全部结果所构成的测度
例1 假设你家订了一份报纸,送报人可能在早
上6:30—7:30之间把报纸送到你家,你父亲
离开家去工作的时间在早上7:00—8:00之间,
问你父亲在离开家前能得到报纸(称为事件A)
的概率是多少?
解:
以横坐标X表示报纸送到时间,以纵坐标
Y表示父亲离家时间建立平面直角坐标
系,假设随机试验落在方形区域内任何一
点是等可能的,所以符合几何概型的条件.
根据题意,只要点落到阴影部
分,就表示父亲在离开家前能
得到报纸,即时间A发生,所以
例2:两人约定在12∶00到1∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在12∶00至1∶00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.
两人不论谁先到都要等迟到者40分钟,即 小时,设两人分别于x时和y时到达约见地点,要使两人在约定时间范围内相见,当且仅当— ≤x—y≤ ,因此转化成面积问题,利用几何概型求解.
【解】 设两人分别于x时和y时到达约见地点,要使两人能在约定时间范围内相见,
当且仅当
两人到达约见地点所有时刻(x,y)的各种可能结果可用图中的单位正方形内(包括边界)的点来表示,两人能在约定的时间范围内相见的所有时刻(x,y)的各种可能结果可用图中的阴影部分(包括边界)来表示.
因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,因此所求的概率为
例3:甲、乙两人约定上午7∶00至8∶00之间到某站乘公共汽
车,在这段时间内有3班公共汽车,它们开车时刻分别为
7∶20,7∶40,8∶00,如果他们约定,见车就乘,求甲、
乙同乘一车的概率.