师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版选修2-13.2.1 立体几何中的向量方法下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教A版2003课标版《3.2.1立体几何中的向量方法》优质课PPT课件下载

1.两条异面直线所成角的求法

设a,b分别是两异面直线l1,l2的方向向量,则

|cos|

图2

答案 A

考点二 利用空间向量求直线与平面所成的角

【例2】 (2013·湖南卷)

如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.

(1)证明:AC⊥B1D;

(2)求直线B1C1与平面ACD1所成角的正弦值.

(1)证明 法一 因为BB1⊥平面ABCD,AC?平面ABCD.∴AC⊥BB1,又AC⊥BD,

∴AC⊥平面BB1D,

又B1D?平面BB1D,从而AC⊥B1D.

规律方法 (1)本题求解时关键是结合题设条件进行空间联想,抓住垂直条件有目的推理论证,在第(2)问中,运用空间向量,将线面角转化为直线的方向向量与平面法向量夹角,考查化归思想与方程思想.

(2)利用空间向量求线面角有两种途径:一是求斜线和它在平面内射影的方向向量的夹角(或其补角);二是借助平面的法向量.

【训练2】 (2014·青岛质检)如图,在三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(1)证明:AB⊥A1C;

(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

图1

(1)证明 如图1,取AB的中点O,连接OC,OA1,A1B.

因为CA=CB,所以OC⊥AB.

由于AB=AA1,∠BAA1=60°,

故△AA1B为等边三角形,

所以OA1⊥AB.

因为OC∩OA1=O,所以AB⊥平面OA1C.

教材