1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修2-3《3.1回归分析的基本思想及其初步应用》最新PPT课件优质课下载
1. 两个变量之间的相关关系的含义如何?成正相关和负相关的两个相关变量的散点图分别有什么特点?
相关关系是指自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系.
正相关的散点图中的点散布在从左下角到右上角的区域,负相关的散点图中的点散布在从左上角到右下角的区域
2.观察人体的脂肪含量百分比和年龄的样本数据的散点图,这两个相关变量成正相关.我们需要进一步考虑的问题是,当人的年龄增加时,体内脂肪含量到底是以什么方式增加呢?对此,我们从理论上作些研究.
知识探究(一):回归直线
思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗?
思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?
这些点大致分布在一条直线附近.
思考3:如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.对具有线性相关关系的两个变量,其回归直线一定通过样本点的中心吗?
思考4:在样本数据的散点图中,怎样画出回归直线?
知识探究(二):回归方程
在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计.
思考1:回归直线与散点图中各点的位置应具有怎样的关系?
整体上最接近
思考2:对于求回归直线方程,你有哪些想法?
(x1, y1)
(x2,y2)
(xi,yi)
(xn,yn)
可以用 或 ,
其中 .
思考3:对一组具有线性相关关系的样本数据:(x1,y1),(x2,y2),…,(xn,yn),设其回归方程为 可以用哪些数量关系来刻画各样本点与回归直线的接近程度?
思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适?
(x1, y1)
(x2,y2)