1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《4.2 指数函数》优质教学PPT课件(统编人教A版)下载
问题探究
对于幂 ,我们已经把指数 的范围拓展到了
实数.上一章学习了函数的概念和基本性质,通过对幂函数的研究,进一步了解了研究一类函数的过程和方法.下面继续研究其他类型的基本初等函数.
问题1 随着中国经济高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式.由于旅游人数不断增加,A,B两地景区自2011年起采取了不同的应对措施,A地提高了景区门票价格,而B地则取消了景区门票.
问题探究
下表给出了A,B两地景区2011年至2015年的游客人次以及逐年增加量.
比较两地景区游客人次的变化情况,你发现了怎样的变化规律?为了有利于观察规律,根据表,分别画出A,B两地景区采取不同措施后的15年游客人次的图
问题探究
观察图象和表格,可以发现,A地景区的游客人次近似于直线上升(线性增长),年增加量大致相等(约为10万次);B地景区的游客人次则是非线性增长,年增加量越来越大,但从图象和年增加量都难以看出变化规律.
问题探究
我们知道,年增加量是对相邻两年的游客人次做减法得到的.能否通过对B地景区每年的游客人次做其他运算发现游客人次的变化规律呢?请你试一试.
从2002年起,将B地景区每年的游客人次除以上一年的游客人次,可以得到
结果表明,B 地景区的游客人次的年增长率都约为1.11-1=0.11,是一个常数.
做减法可以得到游客人次的年增加量,做除法可以得到游客人次的年增长率.增加量、增长率是刻画事物变化规律的两个很重要的量.
问题探究
1年后,游客人次是2001年的1.111倍;
2年后,游客人次是2001年的1.112倍;
3年后,游客人次是2001年的1.113倍;
……
x年后,游客人次是2001年的1.11x倍.
如果设经过x年后的游客人次为2001年的y倍,那么
y= 1.11x (x∈[0,+∞)). ①
这是一个函数,其中指数x是自变量.
像这样,增长率为常数的变化方式,我们称为指数增长.因此,B地景区的游客人次近似于指数增长.显然,从2001年开始,B地景区游客人次的变化规律可以近似描述为: