1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
高中必修第二册数学《6.4 平面向量的应用》最新说课课件PPT下载
【复习回顾】
变形
余弦定理:
在 中,以下的三角关系式,在解答有关三角形问题时,经常用到,要记熟并灵活地加以运用:
【几个概念】
仰角:目标视线在水平线上方的叫仰角;
俯角:目标视线在水平线下方的叫俯角;
方位角:北方向线顺时针方向到目标方向线的夹角。
N
方位角60度
水平线
目标方向线
视线
视线
仰角
俯角
遥不可及的月亮离我们地球究竟有多远呢?在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离.
【引言】
解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.
【例1】A,B两点都在河的对岸(不可到达),设计一种测量两点间的距离的方法.
分析:用例1的方法,可以计算出河的这一岸的一点C到对岸两点的距离,再测出∠BCA的大小,借助于余弦定理可以计算出A,B两点间的距离.
【知识应用】
一、测长度问题
解:测量者可以在河岸边选定两点C,D,测得CD=a,并且在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ, ∠BDA=δ,在△ADC和△BDC中,应用正弦定理得