1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
高中选修第二册数学《5.3 导数在研究函数中的应用》最新说课课件PPT下载
大约在1637年,他写了一篇手稿《求最大值与最小值的方法》.让我们沿着这位传奇人物的足迹来用导数研究函数的最大(小)值问题吧.
激趣诱思
知识点拨
一、函数在闭区间上的最值
一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
名师点析1.给定的区间必须是闭区间,如果是开区间,尽管函数图象是连续的,那么它也不一定有最大值和最小值.例如函数f(x)= 在区间(0,2)上的图象是连续不断的曲线,但在该区间上,函数f(x)既没有最大值,也没有最小值.
2.所给函数的图象必须是连续曲线,否则不一定有最值,例如函数
激趣诱思
知识点拨
3.函数的最值是一个整体性概念,最大值(最小值)必须是整个区间内所有函数值中的最大值(最小值).函数在闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有唯一性;而极大值和极小值可能有多个,也可能没有.
4.极值只能在函数区间的内部取得,而最值可以在区间的端点取得,有极值的不一定有最值,有最值的不一定有极值,极值有可能是最值,最值只要不在端点处则一定是极值.
激趣诱思
知识点拨
微思考
在开区间或无穷区间上,最值与极值的联系有哪些?
提示:当连续函数f(x)在开区间(a,b)内只有一个导数为零的点时,若在这一点处f(x)有极大值(或极小值),则可以判定f(x)在该点处取得最大值(或最小值),这里(a,b)也可以换成无穷区间.
激趣诱思
知识点拨
微练习
设在区间[a,b]上,函数y=f(x)的图象是一条连续不断的曲线,且在区间(a,b)内可导,有以下三个命题:
①若f(x)在[a,b]上有最大值,则这个最大值必是[a,b]上的极大值;
②若f(x)在[a,b]上有最小值,则这个最小值必是[a,b]上的极小值;
③若f(x)在[a,b]上有最值,则最值必在x=a或 x=b处取得.
其中真命题共有( )
A.0个 B.1个 C.2个 D.3个