1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级上册冀教版《第二十四章 一元二次方程 24.4 一元二次方程的应用 运用一元二次方程解决较复杂的实际问题》优秀教学课件
新课:
如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头:小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一般补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.(1)小岛D和小岛F相距多少海里?
(2)已知军舰的速度是补给船的2倍,
军舰在由B到C的途中与补给船相遇于E
处,那么相遇时补给船航行了多少海
里?(结果精确到0.1海里)
分析:(1)因为依题意可知△ABC是等腰直角三角形,△DFC也是等腰直角三角形,AC可求,CD就可求,因此由勾股定理便可求DF的长.(2)要求补给船航行的距离就是求DE的长度,DF已求,因此,只要在Rt△DEF中,由勾股定理即可求.
1.一个小球以5m/s的速度在平坦地面上开始滚动,并且均匀减速,滚动10m后小球停下来.(1)小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?(3)小球滚动到5m时约用了多少时间(精确到0.1s)?
练习:
解:(1)小球滚动的平均速度=(5+0)÷2=2.5(m/s)
∴ 小球滚动的时间:10÷2.5=4(s)
(2)平均每秒小球的运动速度减少为(5-0)÷2.5=2(m/s)
(3)设小球滚动到5m时约用了xs,这时速度为(5-2x)m/s,则这段路程内的平均速度为〔5+(5-2x)〕÷2=(5-x)m/s, 所以x(5-x)=5
整理得:x2-5x+5=0 解方程:得x=
x1≈3.6(不合,舍去),x2≈1.4(s)
答:刹车后汽车行驶到5m时约用1.4s.
一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急刹车后汽车又滑行25m后停车.(1)从刹车到停车用了多少时间?(2)从刹车到停车平均每秒车速减少多少?(3)刹车后汽车滑行的15m时约用了多少时间(精确到0.1s)?
探 究
(2)从刹车到停车平均每秒车速减少值为
(初速度-末速度)÷车速变化时间,
即
分析:(1)已知刹车后滑行路程为25m,如果知道滑行的平均速度,则根据路程、速度、时间三者的关系,可求出滑行时间.为使问题简单化、不妨假设车速从20m/s到0m/s是随时间均匀变化的.这段时间内的平均车速第一最大速度与最小速度的平均值,即 于是从刹车到停车的时间为
行驶路程÷平均车速,
即 25÷10=2.5(s).
(3)设刹车后汽车行驶到15m用了x s ,由(2)可知,这时车速为(20-8x)m/s,这段路程内的平均车速为 即(20-4x)m/s,由