1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大版选修2-2《第三章 导数应用 2 导数在实际问题中的应用 2.1实际问题中导数的意义》优秀教学课件
一、利用导数如何判断函数的单调性?
f(x)为增函数
f(x)为减函数
二、如何求函数的极值?
求函数极值的一般步骤
求f(x)在闭区间[a,b]上的最值的步骤
(1) 求f(x)在区间(a,b)内极值
(2) 将y=f(x)的各极值与f(a)、f(b)比较,从而确定函数的最值。
知识回顾:
设函数 y=f(x) 在
某个区间 内可导,
三、如何求函数的最值?
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题。
优化问题的本质即为解有关函数的最大值最小值的实际问题。
导数是求函数最大(小)值的有力工具,可以运用导数,解决一些生活中的优化问题。
生活中的优化问题
研学问题一:面积容积最值问题
例1:
学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128 ,上、下两边各空2dm,左、右两边各空1dm,如何设计海报的尺寸,才能使四周空白面积最小?
解:设版心的高为 dm,则版心的宽为 dm,此时四周空白面积为 :
求导数,得
令
解得
舍去)。
<0;当