师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版选修3-1 数学史选讲一 古埃及的数学下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教A版数学选修3-1《第一讲 早期的算术与几何 一 古埃及的数学》优质课ppt课件

公元6世纪开始,希腊数学兴起,突出对“形”的研究,

公元前4世纪,希腊哲学家亚里士多德定义:数学是量的科学

什么是数学--关于数学的定义

公元19世纪,恩格斯定义:数学是研究现实世界的空间形式与数量关系的科学,

二十世纪80年代开始:数学被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。

数学的特点

数学以抽象的形式,追求高度精确和可靠的知识。

在对宇宙和人类社会的探索中追求最大限度的一般性模式,特别是一般性算法的倾向。(广泛的应用性)

数学作为一种创造性的活动具有一种形式高度抽象的美,即逻辑形式与结构形式的完美。

数学的起源与早期发展

数与形概念的产生

埃及数学

古代希腊数学—论证数学的开端

数学的特点

数学以抽象的形式,追求高度精确和可靠的知识。

在对宇宙和人类社会的探索中追求最大限度的一般性模式,特别是一般性算法的倾向。(广泛的应用性)

数学作为一种创造性的活动具有一种形式高度抽象的美,即逻辑形式与结构形式的完美。

什么是数学—关于数学的定义

公元前6世纪前,数学主要是关于“数”的研究,

公元6世纪开始,希腊数学兴起,突出对“形”的研究,

公元前4世纪,希腊哲学家亚里士多德定义:数学是量的科学

什么是数学--关于数学的定义

公元19世纪,恩格斯定义:数学是研究现实世界的空间形式与数量关系的科学,

二十世纪80年代开始:数学被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。

数学的起源与早期发展