师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教B版版必修一对数的发明下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

必修一《第三章 基本初等函数(Ⅰ) 阅读与欣赏 对数的发明》优秀ppt课件

了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子: 0、1、2、3、4、5、6、7 、8 、9 、10 、11 、12 、13 、14 、…… 1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、…… 这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国著名的数学家、天文学家拉普拉斯(PierreSimonLaplace,1749-1827)曾说对数可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。

用^表示乘方,用log(a)(b)表示以a为底,b的对数 *表示乘号,/表示除号 定义式: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1.a^(log(a)(b))=b 2.log(a)(MN)=log(a)(M)+log(a)(N); 3.log(a)(M/N)=log(a)(M)-log(a)(N); 4.log(a)(M^n)=nlog(a)(M)

对数的性质及推导

1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b) 2. MN=M*N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3.与2类似处理 MN=M/N 由基本性质1(换掉M和N) a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)] 由指数的性质 a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M/N) = log(a)(M) - log(a)(N) 4.与2类似处理 M^n=M^n

推导

由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M)

性质一:换底公式 log(a)(N)=log(b)(N) / log(b)(a) 推导如下 N = a^[log(a)(N)] a = b^[log(b)(a)] 综合两式可得 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N) / log(b)(a)

其他性质:

性质二:(不知道什么名字) 性质二: log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下 由换底公式[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(a^n) / ln(b^n) 由基本性质4可得 log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]} 再由换底公式 log(a^n)(b^m)=m/n*[log(a)(b)] --------------------------------------------(性质及推导 完 )

?公式三: log(a)(b)=1/log(b)(a) 证明如下: 由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)*log(b)(a)=1

?

公式三: