1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教B版必修三数学《第一章 算法初步 阅读与欣赏 我国古代数学家秦九韶》优秀教学ppt课件
他在政务之余,对数学进行潜心钻研,并广泛搜集历学、数学、星象、音律、营造等资料,进行分析、研究。?宋淳祜四至七年(1244至1247),他在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名的巨著《数书九章》,并创造了“大衍求一术”。
这不仅在当时处于世界领先地位,在近代数学和现代电子计算设计中,也起到了重要作用,被称为“中国剩余定理”。他所论的“正负开方术”,被称为“秦九韶程序”。世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则。秦九韶在数学方面的研究成果,比英国数学家取得的成果要早500多年。
秦九韶
划时代巨著:
秦九韶潜心研究数学多年,在湖州守孝三年,所写成的世界数学名著《数书九章》,《癸辛杂识续集》称作《数学大略》,《永乐大典》称作《数书九章》。全书九章十八卷,九章九类:“大衍类”、“天时类”、“田域类”、“测望类”、“赋役类”、“钱谷类”、“营建类”、“军旅类”、“市物类”,每类9题(9问)共计81题(81问)
该书内容丰富至极,上至天文、星象、历律、测候,下至河道、水利、建筑、运输,各种几何图形和体积,钱谷、赋役、市场、牙厘的计算和互易。许多计算方法和经验常数直到现在仍有很高的参考价值和实践意义,被誉为“算中宝典”。该书著述方式,大多由“问曰”、“答曰”、“术曰”、“草曰”四部分组成:“问曰”,是从实际生活中提出问题;“答曰”,给出答案;“术曰”,阐述解题原理与步骤;“草曰”,给出详细的解题过程。此书已为国内外科学史界公认的一部世界数学名著。
此书不仅代表着当时中国数学的先进水平,也标志着中世纪世界数学的最高水平。我国数学史家梁宗巨评价道:“秦九韶的《数书九章》(1247年)是一部划时代的巨著,内容丰富,精湛绝伦。特别是大衍求一术(不定方程的中国独特解法)及高次代数方程的数值解法,在世界数学史上占有崇高的地位。那时欧洲漫长的黑夜犹未结束,中国人的创造却像旭日一般在东方发出万丈光芒。”
3、大衍求一术:
中国古代求解一类大衍问题的方法。大衍问题源于《孙子算经》中的“物不知数”问题:“今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这是属于现代数论中求解一次同余式方程组问题。宋代数学家秦九韶在《数书九章》(1247年成书)中对此类问题的解法作了系统的论述,并称之为大衍求一术。
九韶的“大衍求一术”,领先卡尔?弗里德里希?高斯554年,被康托尔称为“最幸运的天才”。秦九韶所发明的“大衍求一术”,即现代数论中一次同余式组解法,是中世纪世界数学的最高成就,比西方1801年著名数学家高斯(Gauss,1777—1855年)建立的同余理论早554年,被西方称为“中国剩余定理”。秦九韶不仅为中国赢得无上荣誉,也为世界数学作出了杰出贡献。
4、任意次方程
秦九韶的任意次方程的数值解领先霍纳572年。秦九韶在《数书九章》中除“大衍求一术”外,还创拟了正负开方术,即任意高次方程的数值解法,也是中世纪世界数学的最高成就,秦九韶所发明的此项成果比1819年英国人霍纳(W?G?Horner,1786—1837年)的同样解法早572年。秦九韶的正负方术,列算式时,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。
5、一次方程组解法
此外,秦九韶还改进了一次方程组的解法,用互乘对减法消元,与现今的加减消元法完全一致;同时秦九韶又给出了筹算的草式,可使它扩充到一般线性方程中的解法。在欧洲最早是1559年布丢(Buteo,约1490—1570年,法国)给出的,他开始用不很完整的加减消元法解一次方程组,比秦九韶晚了312年,且理论上的不完整也逊于秦九韶。
6、三斜求积术
秦九韶还创用了“三斜求积术”等,给出了已知三角形三边求三角形面积公式,与海伦(Heron,公元50年前后)公式完全一致。秦九韶还给出一些经验常数,如筑土问题中的“坚三穿四壤五,粟率五十,墙法半之”等,即使对当前仍有现实意义。秦九韶还在十八卷77问“推计互易”中给出了配分比例和连锁比例的混合命题的巧妙且一般的运算方法,至今仍有意义。
众说纷纭:
1.对秦九韶的了解补充;
2. 秦九韶的主要贡献.
7、中国剩余定理
民间传说着一则故事——“韩信点兵”。
情境引入:
相传,汉将军韩信率????1500 名将士与楚国交战. 双方大战一场,楚军不敌,败退回营. 而汉军也有伤亡,只知道大约死伤了四百多人,但一时还不知伤亡多少.
于是,韩信让剩余兵士
3 人站一排,结果多出