1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教B版选修1-1《第三章 导数及其应用 3.3 导数的应用 3.3.3 导数的实际应用》优秀教学课件
(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;
(2)对于可导函数f(x),“f(x)在x=x0处的导数f′(x0)=0”是“f(x)在x=x0处取得极值”的必要不充分条件;
(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.
【例1】 (2018·北京卷)设函数f(x)=[ax2-(4a+1)x+4a+3]ex.
(1)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;
(2)求f(x)的单调区间;
(3)若f(x)在x=2处取得极小值,求a的取值范围.
(3)f′(x)=[ax2-(2a+1)x+2]ex=(ax-1)(x-2)ex.
当x∈(2,+∞)时,f′(x)>0.所以f(x)在x=2处取得极小值.
所以f′(x)>0.所以2不是f(x)的极小值点.
探究提高 1.本题利用导数的几何意义曲线在点(1,f(1))处的切线与x轴平行,求a值,切记,需检验切线是否与x轴重合.
2.可导函数在极值点处的导数一定为零,但导数为零的点不一定是极值点,是极值点时也要注意是极大值点还是极小值点.
小结 1.求函数f(x)的极值,则先求方程f′(x)=0的根,再检查f′(x)在方程根的左右附近函数值的符号.
2.若已知极值大小或存在情况,则转化为已知方程f′(x)=0根的大小或存在情况来求解.
3.求函数的单调区间时,若函数的导函数中含有带参数的有理因式,因式根的个数、大小、根是否在定义域内可能都与参数有关,则需对参数进行分类讨论.
4.求函数的极值、最值问题,一般需要求导,借助函数的单调性,转化为方程或不等式问题来解决,有正向思维——直接求函数的极值或最值;也有逆向思维——已知函数的极值或最值,求参数的值或范围,常常用到分类讨论、数形结合的思想.