1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修2-2数学《第三章 数系的扩充与复数 阅读与欣赏 复平面与高斯》精品课课件
写到带有负数的平方根的式子里
两边同时取立方得
A、B不是实数,但是A、B确实存在,
复数的代数形式
复数通常用字母z表示,即z=a+bi(a,b∈R),把复数表示成a+bi
的形式,叫做复数的代数形式。
复数的加减运算按照多项式的加法和减法法则进行,也就是 实部与实部相加减,虚部与虚部相加减,即设z1 =a+bi, z2=c+di, (a,b,c,d∈R,以下不再说明),则有
(a+bi)±(c+di)=(a±c)+(b±d)i
两复数的和或差仍是一个复数。
复数的乘法
复数的乘法运算仍然按照多项式的乘法法则来进行,设z1=a+ bi,z2=c+di,
z1z2=(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(ad+bc)i
两个复数a+bi与c+di相除(c+di≠0),先写成分式的形式,然后 分子分母同时乘以分母的共轭复数,并把结果化简,即
?=?=?=
?
引例 z1=cosα+isinα, z2= cosβ+isinβ,求z1z2和
引例 z=cosα+isinα, 求z2 、z3、 z4
复数的三角形式
我们知道,与复数z=a+bi对应的向量 ? 的模r叫做这个复数
的模,并且r=?。如图8-21所示,以x轴的正半轴为始边
、向量 ? 所在的射线(起点是O)为终边的角θ,叫做复数z=a
+bi的辐角。非零复数的辐角有无穷多个,它们相差2π的整数 倍。例如,i的辐角是2kπ+?(k∈Z),辐角的单位可以用弧度或
度。
图 8-21
满足0≤θ≤2π的辐角θ的值,叫做辐角的主值,通常记作argz,即 0≤argz≤2π。例如,i的辐角主值是?。