1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修2-2数学《第1章 导数及其应用 1.1 导数的概念 1.1.2 瞬时变化率-导数 瞬时速度与瞬时加速度》精品课课件
【核心扫描】
1.瞬时变化率的概念和导数的概念.(重点)
2.理解函数在某点处的导数.(难点)
0
切线的斜率
常数
常数
常数
常数
0
0
常数A
2.平均速度和瞬时速度的关系
平均速度和瞬时速度都是反映运动物体的位移随时间变化而变化情况的.平均速度是运动物体在一个时间段里位移的改变量与这段时间的比值,而瞬时速度是运动物体在某一时刻的速度,当一个时间段趋于0时的平均速度就是瞬时速度.
解决此类问题的关键是理解割线逼近切线的思想.即求曲线上一点处切线的斜率时,先表示出曲线在该点处的割线的斜率,则当Δx无限趋近于0时,可得到割线的斜率逼近切线的斜率.
【变式1】 利用割线逼近切线的方法,分别求曲线y=2x2在x=0,x=-1,x=2处的切线斜率.
[思路探索] 瞬时速度是平均速度在Δt→0时的极限值,为此要求瞬时速度,应先求平均速度.
求瞬时速度时首先明确求哪个点处的瞬时速度,然后,以此点为一端点取一区间计算该区间的平均速度,当Δt无限趋近于0时,平均速度无限趋近于该点处的瞬时速度.
【变式2】 有一作直线运动的物体,其位移s与时间t的关系是s=3t-t2,求此物体在t=2时的瞬时速度.
[错解] f′(x)
[正解] 2f′(x)