试题内容 |
已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s(cm)随时间t(s)的变化规律为s=4sin,t∈[0,+∞).用“五点法”作出这个函数的简图,并回答下列问题. ①小球在开始振动(t=0)时的位移是多少? ②小球上升到最高点和下降到最低点时的位移分别是多少? ③经过多长时间小球往复振动一次? |
答案解析 |
【答案】 列表如下: 描点、连线,图象如图所示.
①将t=0代入s=4sin, 得s=4sin , 所以小球开始振动时的位移是2 cm. ②小球上升到最高点和下降到最低点时的位移分别是4 cm和-4 cm. ③因为振动的周期是π,所以小球往复振动一次所用的时间是π s. 【解析】 |
所属考点 |
三角函数的应用三角函数的应用知识点包括简谐运动、三角函数解决物理问题的三个关键量、曲线拟合和预测的步骤、三角换元的独特之用等部分,有关三角函数的应用的详情如下:简谐运动在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.A就是这个简谐运动的振幅,它是做简谐运动的物体离开平衡位置的最大距离;这个简谐运动的周期是,它是做简谐运动的物体往复 |
录入时间:2021-03-12 14:25:48 |