试题内容 |
在△ABC中,已知a=5,b=3,角C的余弦值是方程5x2+7x-6=0的根,求第三边c的长. |
答案解析 |
【答案】 5x2+7x-6=0可化为(5x-3)·(x+2)=0. ∴x1=,x2=-2(舍去). ∴cosC=. 根据余弦定理, c2=a2+b2-2abcosC=52+32-2×5×3×=16. ∴c=4,即第三边长为4. 【解析】 |
所属考点 |
余弦定理余弦定理知识点包括余弦定理、余弦定理及其推论的应用、余弦定理与方程思想的综合等部分,有关余弦定理的详情如下:余弦定理余弦定理及其推论的应用一般地,三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.余弦定理及其推论可解决两类基本的解三角形的问题:一类是已知两边及夹角解三角形;另一类是已知三边解三角形.余弦定理与方程思想的综合余 |
录入时间:2021-03-13 14:01:17 |