1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
第二十一章 一元二次方程《直接开平方法》说课稿
1.知识与技能
(1)会用开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程.
(2)能根据具体问题的实际意义检验结果是否合理,并对其进行取舍.
2.过程与方法
通过实例,使学生体会一元二次方程应用价值并意识到解一元二次方程的重要性,理解直接开平方法的数学依据,并能应用直接开平方法.让学生经历由简到繁过程,体验类比、化归、降次的数学思想方法,培养学生观察、分析、计算等思维能力及应用意识.
3.情感态度与价值观
通过学生对具体问题的思考、讨论、交流,最终得出结论的过程,培养学生的进取精神,让学生养成科学严谨的治学态度和应用所学知识解决问题的习惯.
三、教学重点与教学难点的分析
本节课是一元二次方程解法的起始课,教学重点是用直接开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程。难点是不可直接降次解方程化为可直接降次解方程的“化归”的转化方法与技巧.
四、教法学法分析:
1、教法:
本节课采用启发式和自主探究式与交流讨论相结合的教学方式。在教学中以启发学生进行探究的形式展开,利用已有的知识,利用学生已有的知识,让学生多交流,主动参与到教学活动中来,让学生处于主导地位。通过比较合理的问题设计、小组讨论形式让学生更好的掌握知识。因此本课主要采用的是启发、探究式教学方法。
2、学法:
通过本节课的教学,让学生学会善于观察、分析讨论、和类比归纳的方法。灵活地运用旧知识去研究新问题,在潜移默化中领会学习方法。使学生从“学会”到“会学”最后到“乐学”。
五、教学过程分析:
根据本节课的教学目标我将教学过程设计一下七个教学环节:活动一,复习提问,回忆旧知;活动二,创设情境,设疑引新;活动三,对比探究,解决问题;活动四,例题解析,巩固深化;活动五,课堂演练;活动六,总结归纳,提高认识;活动七;分层作业,课后巩固:
(一)复习提问,回忆旧知:
通过设置问题,平方根的概念和开平方运算。从而为直接开平方法解一元二次方程做好铺垫。
(二)创设情境,导入新知:
首先以实际问题引入:一桶某种油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体现状的盒子的全部外表面,你能算出盒子的棱长吗?
这个问题中的数量关系比较简单,学生很容易列出相应的方程:设正方体的棱长为xdm,则一个正方体的表面积为6x2dm2,根据一桶油漆可刷的面积,列出方程10×6x2=1500
由此可得x2=25引导学生初步思考、回顾已有的知识,依据平方根的意义求方程的解,主动参与到本节课的研究中来。x1=5,x2=-5
可以验证,5和-5是方程①的两根,但是棱长不能是负值,所以正方体的棱长为5dm(三)合作交流,深入辨析本节课力求在学生已有经验和知识基础之,让学生通过观察、类比、联想、转化自主发现解决问题的方法,理解和掌握直接开平方法。因此在这一环节,首先提出问题(2):你认为应解方程(2x-1)2=5及x2+6x+9=2?积极引导学生观察方程(1)与方程x2=25的区别和联系,积极启发引导,并结合学生共同完成方程(1)的解题过程,规范板书,引导学生不仅要回解方程同时要注意解题格式。在此基础上,教师引导学生小组交流,通过观察方程的结构与完全平方式的联系,类比方程(1)的解法,通过找到问题的突破口,从而发现此方程的左边是为完全平方。这一过程学生通过观察、比较、思考、交流等活动,强化了将“未知转化为已知”的数学思想方法。对直接开平方法有了更深的理解,突破了本课的难点。
(四)例题解析,巩固深化:
这一环节的设计在熟悉用直接开平方法解一元二次方程后,通过方程(3)和(4)进行变式练习,通过具体的练习结果,在观察,归纳、比较中,让学生进一步体会把不能直接降次解的方程转化为能直接降次解的方程的依据、方法和技能。使难点进一步得以突破。同时,通过方程(4)的练习,引导学生进一步归纳总结x2=p或(mx+n)2=p中p的范围(p≥0),使学生深刻理解直接开平方发的理论依据在训练内容的选择上考虑到学生接受新旧知识结合的能力:一是以方法为主,层层递进的方式,二是以基本技能为主,在精心设计的练习过程中抓住学生问题的症结,培养学生独立分析、理解能力和思考解决问题的能力,提高解题技巧。