计算天体的质量 |
|||||||||||||
知识点详情 | |||||||||||||
计算天体的质量知识点包括计算天体的质量知识点梳理、天体质量的计算要点探究、天体密度的计算、天体运动的分析与计算等部分,有关计算天体的质量的详情如下: 计算天体的质量知识点梳理设m太是太阳的质量,m是某个行星的质量,r是行星与太阳之间的距离,可测出该行星绕太阳做匀速圆周运动的周期T. 1.思路:行星与太阳间的万有引力充当向心力. 2.关系式:=________. 3.结论:m太=________只要知道行星绕太阳运动的周期T和半径r就可以计算出太阳的质量. 4.推广:若已知卫星绕行星运动的周期T和卫星与行星之间的距离r,可计算行星的质量m行,公式是m行=________. 答案: 2. 3. 4. 天体质量的计算要点探究天体质量的计算方法
若忽略地球自转的影响,在地球表面上质量为m的物体所受的重力mg等于地球对物体的引力,即,所以有,只要测出G,便可“称量”地球的质量. 天体密度的计算1.利用天体表面的重力加速度求天体密度 2.利用天体的卫星求天体密度 若已知中心天体的半径R,环绕天体的运转周期T,轨道半径r,则可得,中心天体质量,联立可得. 天体运动的分析与计算1.一个模型 天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. 2.两条思路 (1)万有引力提供天体运动的向心力 (2)黄金代换 在天体表面上,天体对物体的万有引力近似等于物体的重力,即,从而得出Gm天=gR2. 图解 r火>r地, v火<v地,ω火<ω地, a火<a地,T火>T地. 越高越慢 3.记住两组公式 (1) (2)(g为星体表面处的重力加速度) 即GM=R2g,该公式通常被称黄金代换. 4.四个重要结论 设质量为m的天体绕另一质量为M的中心天体做半径为r的匀速圆周运动. (1)由得,r越大,天体的v越小. (2)由得,r越大,天体的ω越小. (3)由得,r越大,天体的T越大. (4)由得,r越大,天体的a越小. 点睛:解决天体运动问题的关键 ①建立物理模型——绕中心天体做匀速圆周运动. ②应用物理规律——万有引力定律和圆周运动规律. ③利用“GM=gR2”——“gR2”代换“GM”,简化记忆和解题. |
|||||||||||||
典型例题 | |||||||||||||
【第1题】
“嫦娥四号”在人类历史上首次实现在月球背面软着陆和勘测.假定测得月球表面物体自由落体加速度为g,已知月球半径R和月球绕地球运转周期T,引力常量为G.根据万有引力定律,就可以“称量”出月球质量了.月球质量M为( ) A. B. C. D. 【第2题】
(多选)利用引力常量G和下列某一组数据,能计算出地球质量的是( ) A.地球的半径及重力加速度(不考虑地球自转) B.人造卫星在地面附近绕地球做圆周运动的速度及周期 C.月球绕地球做圆周运动的周期及月球与地球间的距离 D.地球绕太阳做圆周运动的周期及地球与太阳间的距离 【第3题】
2018年2月,我国500 m口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T=5.19 ms.假设星体为质量均匀分布的球体,已知万有引力常量为6.67×10-11N·m2/kg2.以周期T稳定自转的星体的密度最小值约为( ) A.5×109 kg/m3 B.5×1012 kg/m3 C.5×1015 kg/m3 D.5×1018 kg/m3 【第4题】
如图所示,是按一定比例尺绘制的太阳系五颗行星的轨道,可以看出,行星的轨道十分接近圆,由图可知( ) A.火星的公转周期小于地球的公转周期 B.水星的公转速度小于地球的公转速度 C.木星的公转角速度小于地球的公转角速度 D.金星的向心加速度小于地球的向心加速度 |