1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2011课标版《探索勾股定理》最新教案优质课下载
(3).进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
(4).在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.
2. 过程与方法
通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理的表达能力。
3.情感态度与价值观
通过对问题的发现和解决,培养学生的相互协作意识及数学表达能力,体验探索、交流与成功。
二、教学重难点
教学重点:图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力。
教学难点:使学生学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.
三、教学过程设计
本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.
第一环节:创设情境,引入新课
内容:之前我们学习了直角三角形三个角之间的关系,是直角三角形两锐角互补。直角三角形三边有两边之和大于第三边,两边之差小于第三边,那具体的三边关系是什么呢这就是我们今天要学习的勾股定理,在西方称为毕达哥拉斯定理,接下来我们就跟随毕达哥拉斯的脚步看看这个定理是怎么发现的。
第二环节:探索发现勾股定理
1.探究活动一
内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:
问:毕达哥拉斯在地砖中发现了勾股定理,你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.
效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.
2.探究活动二
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:
(2)填表: