1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题。
2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想。
3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识。
教学重点:
用面积法验证勾股定理,应用勾股定理解决简单的实际问题。
教学难点:
通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,自然渗透德育教育。
(1)启发探究
(2)结合教学内容自然渗透德育教育
多媒体课件,8个全等的直角三角形
本节课设计了七个教学环节:(一)毕达哥拉斯树展示,激趣引入;(二)历史回顾,增强爱国情感;(三)小组活动,拼图验证;(四)例题讲解,初步应用;(五) 追溯历史,激发情感;;(六) 回顾反思,提炼升华;(七) 布置作业,课堂延伸.
第一环节:毕达哥拉斯树展示,激趣引入
给出并展示毕达哥拉斯树动态演示
意图:通过漂亮的毕达哥拉斯树动态演示,展现给学生不一样的数学之美,让学生学会用发现美的眼光在数学的海洋里发现美、创造美、感受美。
第二环节:历史回顾,增强爱国情感
国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图 .2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就 ,又像一只转动的风车,欢迎来自世界各地的数学家们!意图:介绍与勾股定理有关的历史,了解中国古代灿烂的文化,培养爱国主义情感和增强民族自豪感。
第三环节:小组活动,拼图验证.
内容:教师提出问题:
(1)勾股定理的内容是什么?(请一名学生回答)
(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.
意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.
效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.
内容: 活动1: 教师导入,小组拼图.
教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)
活动2:层层设问,完成验证一.
学生通过自主探究,小组讨论得到两个图形:在此基础上教师提问:
(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);
(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×1/2ab+c2.并得到a²+b²=c²)
从而利用图1验证了勾股定理.
活动3 : 自主探究,完成验证二.
教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?
(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)
趣闻调查组报告:勾股定理的总统证法.
在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……
于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下
的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给
出了简洁的证明方法.
1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法.
1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.
意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.
效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点;以名人事例激发学生的学生兴趣,树立远大理想。
第四环节:例题讲解 初步应用
第五环节: 追溯历史 激发情感
第六环节:回顾反思 提炼升
第七环节:布置作业,课堂延伸
关于教学过程的更多环节详情请下载后观看
1.课堂教学反思
(1)在顺利完成教学内容的同时,达成了教学目标,又进行了德育教育的渗透;
(2)巧妙的切入,利用毕达哥拉斯树的动态演示,给学生以视觉上的冲击,让学生感受数学美;
(3)勾股定理作为“千古第一定理”其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究得到方法1,最后由学生独立探究得到方法2.这样学生较容易地突破了本节课的难点;
(4)结合教学内容,自然渗透德育教育,不论是讲故事,还是数学史的引申或是例题的选择(不走近道踩踏花草及工程预计造价问题)都体现了教学内容与德育渗透的有机结合。
(5)最后的回顾反思环节,学生感受颇深,学习积极性高,获得的体会也很多。
(6)在教学过程中发现有细微之处确实还可以雕琢,在今后的教学中更加精益求精。