师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版八年级上册勾股定理的图形验证下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、学生起点分析

学生的知识技能基础:

学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.

学生活动经验基础:

学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.

二、教学任务分析

本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力 ,为后面的学习打下基础.为此本节课的教学目标是:

1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.

2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.

3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.

用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.

三、教学过程

本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升 (四) 例题讲解,初步应用;(五) 追溯历史,激发情感;;(六) 回顾反思,提炼升华;(七) 布置作业,课堂延伸.

第一环节: 复习设疑,激趣引入

内容:教师提出问题:

(1)勾股定理的内容是什么?(请一名学生回答)

(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.

意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.

效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.

第二环节:小组活动,拼图验证.

内容: 活动1: 教师导入,小组拼图.

教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)

活动2:层层设问,完成验证一.

学生通过自主探究,小组讨论得到两个图形:在此基础上教师提问:

(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);

(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×1/2ab+c2.并得到a²+b²=c²)

从而利用图1验证了勾股定理.

活动3 : 自主探究,完成验证二.

教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?

(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)

意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.

效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.

第三环节: 延伸拓展,能力提升

第四环节: 例题讲解 初步应用

第五环节: 追溯历史 激发情感

第六环节: 回顾反思 提炼升华

第七环节: 布置作业,课堂延伸

关于教学过程的更多环节详情请下载后观看

四、教学设计反思

1.设计说明

勾股定理作为“千古第一定理”其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究得到方法1,最后由学生独立探究得到方法2.这样学生较容易地突破了本节课的难点.

2.教学建议

如果学生的程度较好可以按照本教学设计进行教学,并且可以把分层练习中“知识拓展”作为课堂教学内容.

如果学生程度稍差,可以舍弃第三环节以及第五环节中的(2)(3)两个问题.而把分层练习中“基础训练”作为课堂过关使用.

教材