师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版八年级上册回顾与思考下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、学生起点分析

通过前面三节的学习,学生已经基本掌握了勾股定理及逆定理的知识,并能应用勾股定理及其逆定理解决一些具体的实际问题,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.

二、教学任务分析

本课时教学是复习课,强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力.让学生通过动手、动脑、动口自主探索,感受数学的美,以提高学习兴趣.

为此,本节课的教学目标是:

①让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用.

②在回顾与思考的过程中,提高解决问题,反思问题的能力.

③在反思和交流的过程中,体验学习带来的无尽的乐趣.通过对勾股定理历史的再认识,培养爱国主义精神,体验科学给人来带来的力量.

三、教学过程设计

本节课设计了六个环节.第一环节:知识结构梳理;第二环节:合作探究;第三环节:拓展提升;第四环节:交流小结;第五环节:布置作业..

第一环节:知识结构梳理

(第1—6题由学生独立思考完成,小组代表展示)

1.勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用ab和c分别表示直角三角形的直角边和斜边,那么__________=c²

2.勾股定理各种表达式:

在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边也分别为abc,则c=_________,b=_________,c=_________.

3.勾股定理的逆定理:

在△ABC中,若abc三边满足___________,则△ABC为___________.

4.勾股数:

满足___________的三个___________,称为勾股数.

5.几何体上的最短路程是将立体图形的________展开,转化为_________上的路程问题,再利用___________两点之间,___________解决最短线路问题.

6.直角三角形的边、角之间分别存在着什么关系?

(教师引导,小组讨论、总结)

从边的关系来说,当然就是勾股定理;从角度的关系来说,由于直角三角形中有一个特殊的角即直角,所以直角三角形的两个锐角互余.

直角三角形作为一个特殊的三角形.如果又有一个锐角是30°,那么30°的角所对的直角边时斜边的一半.

7.举例说明,如何判断一个三角形是直角三角形.

判断一个三角形是直角三角形可以从角、边两个方面去判断.

(1)从定义即从角出发去判断一个三角形是直角三角形.

例如:①在△ABC中,

,根据三角形的内角和定理,可得

,根据定义可判断△ABC是直角三角形.

②在△ABC中,

,由三角形的内角和定理可知,

,△ABC是直角三角形.

(2)从边出发来判断一个三角形是直角三角形.其实从边来判断直角三角形它的理论依据就是判定直角三角形的条件(即勾股定理的逆定理).

例如:①△ABC的三条边分别为,而,根据勾股定理的逆定理可知△ABC是直角三角形,但这里要注意的是b所对的角

②在△ABC三条边的比为

,△ABC是直角三角形.

8.通过回顾与思考中的问题的交流,由同学们自己建立本章的知识结构图.

(小组内展示自己总结的知识框图,相互交流完善知识框图;每个小组选取一名代表,展示本组的知识框图.)

三边的关系--勾股定理→历史、应用直角三角形

直角三角形的判别→应用

目的:复习与直角三有形有关的知识,加强知识的前后联系,把勾股定理及判定纳入直角三角形的知识体系中,把以前的零散的知识形成知识体系.通过学生相互交流,整理知识框图复习本章知识点,自觉内化到自身的知识体系中.

效果:学生有独立思考的空间,与有合作交流的舞台,动静结合,相得益彰.

第二环节:合作探究

第三环节:拓展提升

第四环节:交流小结

第五环节:布置作业

关于教学过程的更多环节详情请下载后观看

四、教学设计反思

本节课是复习课,利用勾股定理和勾股逆定理来解决实际问题.勾股定理是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,而勾股定理逆用的作用是判定某一个三角形是否是直角三角形.针对我班学生的知识结构和心理特征,本节课的设计思路是引导学生“‘做’数学”,先由浅入深,在学生的自主探究与合作交流中解决问题,这样既遵循了学生的认知规律,又充分体现了“学生是数学学习的主人、教师是数学学习的组织者、引导者与合作者”的教学理念.本节课围绕激趣引入,归纳知识--综合练习,应用知识—课堂小结三部分,发展学生应用数学的意识与能力,增强了学生学好数学的愿望和信心.让学生自己绘制知识网络图,进一步体会本章所学知识之间的前后联系,并培养了学生这方面的能力.设计的题目既考察了对基本知识的掌握情况,又注重了综合课的特点,注重对所学知识的综合利用.设计的问题尽量与实际问题有联系,体现了数学来源于实际,又应用于生活实际,这一点符合新课标的要求.

五、附:板书设计

回顾与思考

一 情境引入

二 本章知识结构

三边的关系--勾股定理→历史、应用

直角三角形

直角三角形的判别→应用

三 合作探究

探究一:利用勾股定理求边长

探究二:利用勾股定理求图形面积

探究三:利用勾股定理及逆定理判定△ABC的形状或求角度

探究四:勾股定理及逆定理的综合应用

四 拓展与提升

五 交流小结

六 布置作业

教材