1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级上册(2013年7月第1版)《回顾与思考》最新教案优质课下载
二、教学任务分析
勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之间的数量关系,将形与数密切联系起来,理论上占有重要的地位,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用,勾股定理的应用蕴含着丰富的文化价值.勾股定理也是后续有关几何度量运算和代数学习必要的基础,具有学科的基础性与广泛的应用.
本课时教学是复习课,强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力.让学生通过动手、动脑、动口自主探索,感受数学的美,以提高学习兴趣.
为此,本节课的教学目标是:
①让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用.
②在回顾与思考的过程中,提高解决问题,反思问题的能力.
③在反思和交流的过程中,体验学习带来的无尽的乐趣.通过对勾股定理历史的再认识,培养爱国主义精神,体验科学给人来带来的力量.
三、教学过程设计
本节课设计了六个环节.第一环节:情境引入;第二环节:知识结构梳理;第三环节:合作探究;第四环节:拓展提升;第五环节:交流小结;第六环节:布置作业.
第一环节 情境引入
勾股定理,我们把它称为世界第一定理.它的重要性,通过这一章的学习已深有体验,首先,勾股定理是数形结合的最典型的代表;其次,了解勾股定理历史的同学知道,正是由于勾股定理得发现,导致无理数的发现,引发了数学的第一次危机,这一点,我们将在《实数》一章里讲到,第三,勾股定理中的公式是第一个不定方程,有许许多多的数满足这个方程,也是有完整的解答的最早的不定方程,最为著名的就是费马大定理,直到1995年,数学家怀尔斯才将它证明.
勾股定理是我们数学史的奇迹,我们已经比较完整地研究了这个先人给我们留下来的宝贵的财富,这节课,我们将通过回顾与思考中的几个问题更进一步了解勾股定理的历史,勾股定理的应用.
目的:
通过对勾股定理历史及地位的解读,让学生了解知识脉络及前后联系,激发学习探究热情.
效果:
从历史的深度提出问题,学生探究热情高涨,为下一环节奠定了良好基础.
第二环节:知识结构梳理
本章知识要点及结构:
(第1—6题由学生独立思考完成,小组代表展示)
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用 EMBED Equation.DSMT4 和 EMBED Equation.DSMT4 分别表示直角三角形的直角边和斜边,那么__________ EMBED Equation.DSMT4 .
2.勾股定理各种表达式:
在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边也分别为 EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 =_________, EMBED Equation.DSMT4 =_________, EMBED Equation.DSMT4 =_________.
3.勾股定理的逆定理:
在△ABC中,若 EMBED Equation.DSMT4 三边满足___________,则△ABC为___________.
4.勾股数: