1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,能积极主动地参与到学习中,充分认识到学习无理数引入的必要性,发展学生的合情推理能力.
《认识无理数》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感受数的发展,感知生活中确实存在着不同于有理数的数. 本课时为第二课时,内容是建立无理数的基本概念,感受无理数是无限不循环小数,会判断一个数是无理数,并能结合实际判别有理数和无理数.在活动中进一步发展学生独立思考的意识和合作交流的能力,在学习中领悟数学知识来源于生活,体会数学知识与现实世界的联系,而且对今后学习数学也有着重要意义
知识与技能:
借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.
过程与方法:
1探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.
2.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.
情感、态度与价值观:
充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力
教学重点;
无理数概念探讨过程;了解无理数与有理数区别,并进行判断。
教学难点:
无理数概念的建立及估算。
教学方法:引导、探究、发现与合作交流相结合。
本节课设计六个教学环节:
第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.
第一环节:新课引入
内容:想一想:
1. 有理数是如何分类的?
整数(如-1,0,2,3,…)
有理数
分数(如1/3,-2/5,9/11,0.5,… )
2.我们上节课又了解到一些数,如a²=2,b²=5中的a,b不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.
意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.
效果:激发学生的好奇心和求知欲,引出本节课题“认识无理数(2)”.
第二个环节:活动与探究
1. 探索无理数的小数表示
内容:以小组讨论的形式对面积为2的正方形的边长a和面积为5的正方形的边长b进行估计.
请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.
边长a面积s
1
1.4
1.41
1.414
1.4142
归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它们是无限不循环小数.
请大家用上面的方法估计面积为5的正方形的边长b的值.
目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.
效果:学生感受到无理数确实是无限不循环的,明确无理数的概念
强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.
我们把无限不循环小数叫做无理数.(圆周率=3.14159265…也是一个无限不循环小数,故是无理数).
2. 探索有理数的小数表示,与无理数的区别。
内容:将下列各数表示成小数,
3,探究结论:有理数只能化成有限小数或无限循环小数.
即任何有限小数或无限循环小数都是有理数.
目的:通过学生的活动与探究,得出无理数与有理数区别
效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.
第三个环节:知识分类整理
内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).
强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?
目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.
效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力.
第四个环节:知识运用与巩固
第五个环节:课堂小结
第六个环节:布置作业
关于教学过程的更多环节详情请下载后观看
本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估计、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念;可能在教学实施过程中,对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行,但感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.让学生在数学学习中能将抽象的知识形象具体化,复杂知识体系化.同时引导学生回顾旧知、探索新知,形成一定的数学探究能力,进一步培养学生的分类和归纳的思想,为今后的数学学习打下坚实基础. 但对概念的理解掌握一些同学还不很到位,只能在以后的教学过程中不断的加深.另外,由于学生对有理数和无理数的概念具体感知还不够,所以在第三环节:知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例1后再进行知识分类整理可能会更好.