师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版八年级上册存在既不是整数,也不是分数的数下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一 、学生起点分析

学生在小学阶段已经学习了非负数,七年级又学习了有理数.本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,能积极主动地参与到学习中,充分认识到学习无理数引入的必要性,发展学生的合情推理能力.

二 、教学任务分析

《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感受数的发展,感知生活中确实存在着不同于有理数的数. 本课时为第二课时,内容是建立无理数的基本概念,借助计算器,感受无理数是无限不循环小数,会判断一个数是无理数,并能结合实际判别有理数和无理数.在活动中进一步发展学生独立思考的意识和合作交流的能力,在学习中领悟数学知识来源于生活,体会数学知识与现实世界的联系,而且对今后学习数学也有着重要意义.为此,本节课的教学目标是:

1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.

2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.

3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.

4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.

三 、教学过程设计

本节课设计六个教学环节:

第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.

第一环节:新课引入

内容:想一想:

1. 有理数是如何分类的?

整数(如,0,2,3,…)

有理数

分数(如0.5,… )

2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率0.020020002…上节课又了解到一些数,如中的a,b不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.

意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.

效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”.

第二个环节:活动与探究

1. 探索无理数的小数表示

内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a和面积为5的正方形的边长b进行估计.

请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.

边长a面积s

1.4

1.41

1.414

1.4142

归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它们是无限不循环小数.

请大家用上面的方法估计面积为5的正方形的边长b的值.

目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.

效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础.

2. 探索有理数的小数表示,明确无理数的概念

内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.

议一议:分数化成小数,最终此小数的形式有哪几种情况?

探究结论:分数只能化成有限小数或无限循环小数.

即任何有限小数或无限循环小数都是有理数.

强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.

我们把无限不循环小数叫做无理数.(圆周率#FormatImgID_9#=3.14159265…也是一个无限不循环小数,故#FormatImgID_10#是无理数).

目的:通过学生的活动与探究,得出无理数的概念.

效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.

第三个环节:知识分类整理

第四个环节:知识运用与巩固

第五个环节:课堂小结

关于教学过程的更多环节详情请下载后观看

四、 教学反思

本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估计、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念;可能在教学实施过程中,对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行,但感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.让学生在数学学习中能将抽象的知识形象具体化,复杂知识体系化.同时引导学生回顾旧知、探索新知,形成一定的数学探究能力,进一步培养学生的分类和归纳的思想,为今后的数学学习打下坚实基础. 但对概念的理解掌握一些同学还不很到位,只能在以后的教学过程中不断的加深.另外,由于学生对有理数和无理数的概念具体感知还不够,所以在第三环节:知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例1后再进行知识分类整理可能会更好.

五、附:板书设计

1 .数不够用了(2)

一、导入

二、新课

1.有理数的定义:有限小数或无限循环小数.

2.无理数的定义:无限不循环小数.

3.数分类:

三、例题讲述

四、小结

教材