师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版八年级上册代入法解二元一次方程组下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《代入法解二元一次方程组》集体备课教案优质课下载

内容:

教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.

设他们中有x个成人,y个儿童,我们得到了方程组 EMBED Equation.3 成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验 EMBED Equation.3 是不是方程 EMBED Equation.DSMT4 和方程 EMBED Equation.DSMT4 的解,从而得知这个解既是 EMBED Equation.DSMT4 的解,也是 EMBED Equation.DSMT4 的解,根据二元一次方程组的解的定义,得出 EMBED Equation.3 是方程组 EMBED Equation.3 的解.所以成人和儿童分别去了5人和3人.

提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?

目的:“温故而知新”,培养学生养成时时回顾已有知识的习惯,并在回顾的过程中学会思考和质疑,通过质疑,自然地引出我们要研究和解决的问题.

设计效果:通过对已有知识的回顾和思考,学生知识获得既感到自然又倍添新奇,有跃跃欲试的心情.

第二环节:探索新知

内容:

回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题? (由学生独立思考解决,教师注意指导学生规范表达)

解:设去了x个成人,则去了 EMBED Equation.DSMT4 个儿童,根据题意,得:

EMBED Equation.DSMT4

解得: EMBED Equation.DSMT4

将 EMBED Equation.DSMT4 代入 EMBED Equation.DSMT4 ,

解得:8-5=3.

答:去了5个成人, 3个儿童.

在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?

(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)

1.列二元一次方程组设有两个未知数:x个成人,y个儿童.列一元一次方程只设了一个未知数:x个成人,儿童去的个数通过去的总人数与去的成人数相比较,得出 EMBED Equation.DSMT4 个.因此y应该等于 EMBED Equation.DSMT4 .而由二元一次方程组的一个方程 EMBED Equation.DSMT4 ,根据等式的性质可以推出 EMBED Equation.DSMT4 .

2.发现一元一次方程中 EMBED Equation.DSMT4 与方程组中的第二个方程 EMBED Equation.DSMT4 相类似,只需把 EMBED Equation.DSMT4 中的“y”用“ EMBED Equation.DSMT4 ”代替就转化成了一元一次方程.

教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可.

(由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同一个未知量.所以将 EMBED Equation.3 中的①变形,得 EMBED Equation.DSMT4 ③,我们把 EMBED Equation.DSMT4 代入方程②,即将②中的y用 EMBED Equation.DSMT4 代替,这样就有 EMBED Equation.DSMT4 .“二元”化成“一元”.

教师总结:同学们很善于思考.这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.

(教师把解答的详细过程板书在黑板上,并要求学生一起来完成)

解: EMBED Equation.3

由①得: EMBED Equation.DSMT4 . ③

相关资源

教材