1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
学生的知识技能基础:
学生在上节课学习了算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数,能解决有关平均数的实际问题。
学生活动经验基础:
学生在算术平均数和加权平均数的学习活动中,解决了一些相关的实际问题,再次感受到了数据收集和处理的必要性和作用,又获得了一些从事统计活动的数学活动经验,具备了一定的自主探索与合作交流的能力。
本节课的教学任务是:进一步了解权的差异对平均数的影响,理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题,发展数学应用能力,达成有关的情感态度目标。为此,本节课的教学目标是:
1. 知识与技能:
会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。
2. 过程与方法:
通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。
3. 情感与态度:
通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
本节课设计了六个教学环节:第一环节:旧知回顾;第二环节:合作探究;第三环节:随堂练习;第四环节:当堂检测;第五环节:课堂小结;第六环节:布置作业。
第一环节:情境引入
内容:请同学们回忆:什么是算术平均数?什么是加权平均数?
请同学们各举一个有关算术平均数和加权平均数的实例,与同伴交流。
在学生的复习交流中引入课题:本节课将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别。
目的: 以旧引新,自然衔接,起到温故知新、调动学生学习积极性的作用。
注意事项:教师对学生所举的算术平均数和加权平均数的实例只要合理,就要给予积极地评价,让他们体会数学与社会生活的密切联系,了解数学的价值,但时间不能占用过多,达到调动学生的积极性,引入新课既可。
第二环节:合作探究
内容:1.做一做
某学校进行广播操比赛,比赛打分包括以下几项:服装统一、进退场有
序、动作规范、动作整齐(每项满分 10 分)。其中三个班级的成绩分别如下:
服装统一进退场有序动作规范动作整齐
一班9898
二班10978
三班8989
(1)若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按
10%,20%,30%,40%的比例计算各班的广播操比赛成绩,那么哪个班的成绩最高?
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案。根据你的评分方案,哪一个班的广播操比赛成绩最高?与同伴进行交流。
对于第(1)问,让每一位学生动手计算,然后教师抽取几个不同层次的学生做的结果投影展示,进行评价。正确的答案是:
一班的广播操成绩为:9×10%+8×20%+9×30%+8×40%﹦8.4(分)
二班的广播操成绩为:10×10%+9×20%+7×30%+8×40%﹦8.1(分)
三班的广播操成绩为:8×10%+9×20%+8×30%+9×40%﹦8.6(分)
因此,三班的广播操成绩最高。
对于第(2)问,让学生先在小组内各抒己见,然后在全班交流体会,归纳:
以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。
目的: 通过学生计算,自己再设计方案和交流,确实让他们体会到权的差异对结果的影响,认识到权的重要性。
内容:2.议一议1.小明骑自行车的速度是15千米/时,步行的速度是5千米/时。
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?
(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?你能从权的角度来理解这样的平均速度吗?
(3)举出生活中加权平均数的实例,并解决之。
2. 课本P139随堂练习第1,2题。
目的: 第1题是课本上“议一议”问题,题中(1)(2)两问是让学生通过比较,认识算术平均数是加权平均数的一种特殊情况,即各项的权相等;第(3)问旨在增强学生用数学的意识。第2题是课本上随堂练习的两道题,让学生再次体会到“权”的重要性,并运用加权平均数解决实际问题,发展数学应用能力。
注意事项:对学生的解题过程和结果做适当的评价,特别要关注中下等生,对他们点点滴滴的进步都要给予鼓励。
第三环节:随堂练习
第四环节:当堂检测
第五环节:课堂小结
第六环节:布置作业
关于教学过程的更多环节详情请下载后观看
数学学习不能单纯依赖模仿与记忆,动手实践、自主探索、合作交流是学生学习数学重要方式。本节课的几个教学环节就是想通过想一想、议一议、做一做等数学活动来引导学生探索和交流,体会权的差异其平均数的影响,认识算术平均数和加权平均数的联系与区别,在改变学生的学习方式的同时让学生增强数学的应用意识,了解数学的价值,提高思维能力,增进学好数学的信心。