1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2011课标版《4平行线的性质》优质课教案下载
3.进一步理解和总结证明的步骤、格式、方法.
4.了解两定理在条件和结构上的区别,体会正逆的思维过程.
二、教学过程
本节课的设计分为四个环节:情境引入——探索与应用——反馈练习——反思与小结
第一环节:情境引入
一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B是130°,第二次拐的角∠C是多少度?
说明:这是一个实际问题,要求出∠C的度数,需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.
第二环节:探索与应用
① 画出直线AB的平行线CD,结合画图过程思考画出的平行线,被第三条直线所截的同位角的关系是怎样的?
② 平行公理:两直线平行同位角相等.
③ 两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
∵a∥b(已知),
∴∠1=∠2(两条直线平行,同位角相等)
∵∠1=∠3(对顶角相等),
∴∠2=∠3(等量代换).
2.如右图所示∵a∥b(已知)
∴∠1=∠2(两直线平行,同位角相等)
∵∠1+∠4=180°(邻补角定义)
∴∠2+∠4=180°(等量代换)
即:两条平行线被第三条直线所截,同旁内角互补,简单说成,两直线平行,同旁内角互补
∵a∥b,
∴∠1=∠2(两直线平行,同位角相等).
∵a∥b(已知),
∴∠2=∠3(两直线平行,内错角相等).
∵a∥b(已知),