1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《16.3角的平分线》公开课教案优质课下载
通过对“角平分线性质”的探究,提高分析问题、解决问题的能力。
【情感态度与价值观】
通过一系列的证明过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。
二、教学重难点
【重点】
证明角平分线的性质和判定。
【难点】
灵活运用角平分线性质解决问题。
三、教学过程
(一)设置情境问题,搭建探究平台
问题l:习题1.8的第1题作三角形的三个内角的角平分线,你发现了什么?能证明自己发现的结论一定正确吗?
于是,首先证明“三角形的三个内角的角平分线交于一点” .
当然学生可能会提到折纸证明、软件演示等方式证明,但最终,教师要引导学生进行逻辑上的证明。
(二)展示思维过程,构建探究平台
已知:如图,设△ABC的角平分线.BM、CN相交于点P,
证明:P点在∠BAC的角平分线上.
证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足.
∵BM是△ABC的角平分线,点P在BM上,
∴PD=PE(角平分线上的点到这个角的两边的距离相等).
同理:PE=PF.
∴PD=PF.
∴点P在∠BAC的平分线上(在一个角的内部,且到角两边距离相等的点,在这个角的平分线上).
∴△ABC的三条角平分线相交于点P.
在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,还有什么“附带”的成果呢?
(PD=PE=PF,即这个交点到三角形三边的距离相等.)