1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修四《3.1.1两角和与差的余弦》最新教案优质课下载
【高考等级要求】 C级
【教学重点】 两角和与差的余弦公式的理解与灵活运用。
【教学难点】 两角和与差的余弦公式的推导过程,特别是一般性的推广。
【突破措施】 先由特殊情形引入再向一般性过渡,充分挖掘学生的思考和探究能力,以达到对公式的深入理解和灵活运用。
【教材分析】 这节内容是教材必修4的第三章《三角恒等变换》第一节,是高考的重点考点,历年高考必考内容,一般在填空或解答题第17题出现。教材在学生掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数表示的两角和与差的三角函数.“两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出α,β,α-β均为锐角时成立.对于α,β为任意角的情况,教材运用向量的知识进行了探究.同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了一般性。
【学情分析】 本课时面对的学生是高一年级的学生,数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。他们经过半个多学期的高中生活,储备了一定的数学知识,掌握了一些高中数学的学习方法,这为本节课的学习建立了良好的知识基础。
【学法设计】 独立思考,生生交流探究,小组合作
【知识链接】 诱导公式 平面向量的数量积
一、 产生对公式的需求 引入新课 (1分钟)
首先让学生通过具体实例消除对“cos(α-β)=cosα-cosβ”的误解,说明两角和(差)的三角函数不能按分配律展开。并鼓励同学对公式结构的可能情况进行大胆猜想和尝试性探索。
二、自主探究 引发思考 层层深入 得出结论 (8分钟)
独立思考以下问题:
(1)向量的数量积
则
(2)单位圆上的点的坐标表示
由图可知: ( ) , ( )则
问题1 :
问题2 :两角和与差的余弦公式推导
(一)两角差的余弦公式
EMBED Equation.DSMT4 EMBED Equation.DSMT4
EMBED Equation.DSMT4
设