师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步冀教版八年级上册17.5 反证法下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《第十七章 特殊三角形 17.5 反证法》课堂教学教案教学设计(冀教版)

反证法证题的步骤.

教学难点

理解反证法的推理依据及方法.

教学方法

讲练结合教学.

教学过程

一、提问:

师:通过预习我们知道反证法,什么叫做反证法?

生:从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法.

师:本节将进一步研究反证法证题的方法,反证法证题的步骤是什么?

生:共分三步:

(1)假设命题的结论不成立,即假设结论的反面成立;

(2)从假设出发,经过推理,得出矛盾;

(3)由矛盾判定假设不正确,从而肯定命题的结论正确.

师:反证法是一种间接证明命题的基本方法.在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明.

例如:在△ABC中,AB=c,BC=a,AC=b,如果∠C=90°,a、b、c三边有何关系?为什么?

解析:由∠C=90°可知是直角三角形,根据勾股定理可知a2+b2=c2.

二、探究

问题:

若将上面的条件改为“在△ABC中,AB=c,BC=a,AC=b,∠C≠90°”,请问结论a2+b2≠c2成立吗?请说明理由.

探究:

假设a2+b2=c2,由勾股定理可知三角形ABC是直角三角形,且∠C=90°,这与已知条件∠C≠90°矛盾.假设不成立,从而说明原结论a2+b2≠c2成立.

这种证明方法与前面的证明方法不同,它是首先假设结论的反面成立,然后经过正确的;逻辑推理得出与已知、定理、公理矛盾的结论,从而得到原结论的正确.像这样的证明方法叫做反证法.

三、应用新知

例1:在△ABC中,AB≠AC,求证:∠B≠∠C

教材