1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
湘教版数学必修一《第1章 集合与函数 1.2 函数的概念与性质 1.2.1 对应、映射与函数 习题4》优质课教案
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学过程:
引入课题
复习初中所学函数的概念,强调函数的模型化思想;
阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
新课教学
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作: y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).
注意:
eq ﹨o﹨ac(○,1) “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
eq ﹨o﹨ac(○,2) 函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
构成函数的三要素:
定义域、对应关系和值域
3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;