1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修一数学《第1章 集合与函数 1.2 函数的概念与性质 1.2.1 对应、映射与函数 习题4》精品课教案
2.会运用函数图象理解和研究函数的奇偶性.
3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
教学重点与难点
以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以选择、填空题为主,中等偏上难度.
奇偶性 定义 图象特点 偶函数 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数 关于y轴对称 奇函数 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数 关于原点对称
2.周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
1.函数奇偶性常用结论
(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.
(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.
2.函数周期性常用结论
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),则T=2a(a>0).
(2)若f(x+a)= eq ﹨f(1,f?x?) ,则T=2a(a>0).
(3)若f(x+a)=- eq ﹨f(1,f?x?) ,则T=2a(a>0).
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( × )
(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( √ )