1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
湘教版必修一《第2章 指数函数、对数函数和幂函数 2.1 指数函数 2.1.1 指数概念的推广 习题1》优秀教案设计
其中a>0,b>0,r,s∈R.
2.在初中,我们知道有些细胞是这样分裂的:由1个分裂成2个,2个分裂成4个,….1个这样的细胞分裂x次后,第x次得到的细胞个数y与x之间构成的函数关系为y=2x,x∈{0,1,2,…}.
[预习导引]
1.函数y=ax叫作指数函数,其中a是不等于1的正实数,函数的定义域是R.
2.从图象可以“读”出的指数函数y=ax(a>1)的性质有:
(1)图象总在x轴上方,且图象在y轴上的射影是y轴正半轴(不包括原点).由此,函数的值域是R+;
(2)图象恒过点(0,1),用式子表示就是a0=1;
(3)函数是区间(-∞,+∞)上的递增函数,由此有:当x>0时,有ax>a0=1;当x<0时,有0<ax<a0=1.
3.如果底数a∈(0,1),那么,它的倒数>1,y=ax=-x,它的图象和y=x的图象关于y轴对称,可以类似地得到函数y=ax(0<a<1)的性质:
(1)图象总在x轴上方,且图象在y轴上的射影是y轴正半轴(不包括原点).由此,函数的值域是R+;
(2)图象恒过点(0,1),用式子表示就是a0=1;
(3)函数是区间(-∞,+∞)上的递减函数,由此有:当x>0时,有0<ax<a0=1;当x<0时,有ax>a0=1.
要点一 指数函数的概念
例1 给出下列函数:
①y=2·3x;②y=3x+1;③y=3x;④y=x3;⑤y=(-2)x.其中,指数函数的个数是( )
A.0 B.1 C.2 D.4
答案 B
解析 ①中,3x的系数是2,故①不是指数函数;②中,y=3x+1的指数是x+1,不是自变量x,故②不是指数函数;③中,3x的系数是1,幂的指数是自变量x,且只有3x一项,故③是指数函数;④中,y=x3的底为自变量,指数为常数,故④不是指数函数.⑤中,底数-2<0,不是指数函数.
规律方法 1.指数函数的解析式必须具有三个特征:(1)底数a为大于0且不等于1的常数;(2)指数位置是自变量x;(3)ax的系数是1.
2.求指数函数的关键是求底数a,并注意a的限制条件.
跟踪演练1 若函数y=(4-3a)x是指数函数,则实数a的取值范围为________________.
答案 {a|a<,且a≠1}
解析 y=(4-3a)x是指数函数,需满足:
解得a<且a≠1.
故a的取值范围为{a|a<,且a≠1}.