1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修2-1(理科)数学《第2章 圆锥曲线与方程 2.3 抛物线 2.3.1 抛物线的定义与标准方程》精品课教案
本节包括抛物线的定义,标准方程和应用三个部分,分为两课时完成.本节课是第一课时,是在学生原有认知的基础上从几何与代数两个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.教材在本节内容中只研究了顶点在原点,焦点在 轴正半轴上的抛物线的标准方程,以思考交流的形式让学生自己去归纳抛物线标准方程的另外三种形式.这样的处理给学生提供了一次探究和交流的机会.有利于学生对抛物线标准方程的理解,有利于学生思维能力的提高和学习兴趣的培养.
通过本节课的学习,学生不仅能掌握抛物线的几何特征,定义和标准方程,为后面学习抛物线的性质及其在实际问题中的应用打好基础.而且有助于学生观察分析能力与抽象概括能力的培养,有助于学生运算技能的训练与提高,对学生进一步理解解析法和数形结合思想有很好的作用.也进一步巩固了圆锥曲线的学习流程与研究方法.
二、学情分析
抛物线是圆锥曲线中的一种,也是日常生活中常见的一种曲线.学生很早就认识了抛物线,知道斜抛物体的轨迹是抛物线,一些拱桥的桥拱形状是抛物线,一元二次函数的图像是抛物线等等.可以说学生对抛物线的几何图形已经有了直观的认识. 这节课的授课对象是我校高二的学生,他们的数学基础知识比较扎实,具有一定的空间想象能力、抽象概括能力和推理运算的技能,有较好的学习习惯和方法.在本节课之前,学生已经学习了椭圆,对圆锥曲线的研究过程和研究方法有了一定的了解和认识,这对于圆锥曲线的后续学习有借鉴、迁移的作用.
三、教学目标和重点难点
依据对教材和学情的分析,遵循《普通高中数学课程标准》对本节的教学要求,我将这节课的教学目标、重点和难点设置为:
教学目标:
1.经历从具体情景中抽象出抛物线几何特征的过程;
2.掌握抛物线的几何图形,定义和标准方程;
3.进一步巩固圆锥曲线的研究方法,体会类比法,直接法,待定系数法和数形结合思想在数学中的应用;
4.感受抛物线的广泛应用和文化价值,体会学习数学的乐趣和数学美.
教学重点:
掌握抛物线的定义与相关概念;
掌握抛物线的标准方程;
教学难点:从抛物线的画法中抽象概括出抛物线的定义.
四、教学问题诊断
本节课的教学难点是从抛物线的画法中抽象概括出抛物线的定义.对教学难点的突破我采取的策略是:
1.类比学习椭圆的过程和方法去学习抛物线.
2.鉴于抛物线的画法比较复杂,用教具难以操作,因此我运用多媒体来演示画抛物线的过程.另外,画法中所隐含的抛物线的本质特征不是特别明显,对学生的抽象能力要求比较高,为此,我设置了两个问题,为学生发现抛物线的几何特征作铺垫.
3.学生在抽象概括抛物线定义时,容易忽略抛物线定义中“点 不在直线 上”这个条件.为了加深学生对这个条件的理解,教学中通过师生互动来引导学生逐步完善抛物线的定义,并以小组合作交流的方式讨论这个条件的必要性.
另外,在建系、推导抛物线标准方程的过程中,依据学生的认知习惯,同时激励学生主动学习,我采取了以下策略:
1.坐标系的建立——教师不作引导,由学生自己选择建系方式,再将学生的结果用投影仪展示出来,并进行归纳.
2.求抛物线的方程——全班学生分工,求出不同建系方式下的抛物线方程.通过比较,明确第2种建系方式所得的抛物线方程最简洁,并把这个方程叫做抛物线的标准方程.
3.明确抛物线标准方程的四种形式——给出问题4,先让学生独立思考,再组织学生以小组交流的方式进行讨论.以加深学生对抛物线标准方程的理解.
五、教学过程