1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修2-1(理科)《第2章 圆锥曲线与方程 2.1 椭圆 2.1.1 椭圆的定义与标准方程》优秀教案
学生已经建立圆的概念和方程的经历,还有曲线与方程,初步认识了解析几何的特征,并且已经初步体验到了数形结合的基木思想,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的能力。关于概念的获得,学生容易通过几何图形发现轨迹上的点的特征·但学生不容易形成概念体系并用精准的语言描述。在概括椭圆的定义时,需要老师作适当的启发,然后再用数学语言进行精确的描述,推导椭圆标准方程时会遇到两个困难,首先是坐标系如何建立才能使椭圆方程更简单,需要类比圆的方程的建立方法,根据椭圆的对称性建文直角坐标系。其次是如何化简方程使其最简洁。而学生已有的知识与能力不能完全胜任独立解决这两个问题的要求,需要教师作适当的讲解。
教学难点及突破策略
1、本节课的教学难点是椭圆概念的生成和椭圆标准方程的推导与化简;
2、突破策略:通过设计课前导学案,利用表格构建模型,引导学生类比建立圆的方程的方法,及通过数学实验,抽象概况椭圆的概念;经过学生独立思考与小组合作交流讨论,在椭圆上建立合适的直角坐标系;化简动点满足的代数方程时,引导学生注意观察方程的特点,对其进行移项变形后再通过平方运算进行化简,配合教师现场展示。
三、教学目标
(一)知识与技能
1、理解椭圆、椭圆的焦点和焦距的定义;
2、掌握椭圆标准方程的推导过程;
3、会求一些简单的椭圆的标准方程.
(二)过程与方法
通过数学实验,让学生观察猜想归纳,培养学生自主地获取知识的能力,开拓学生探究发现能力,体会类比思想、数形结合思想和坐标法。
(三)情感态度、价值观
1、通过探究性学习,获得成功的喜悦、培养学好数学的信心;
2、帮助学生树立运动、变化观点,培养学生勇于进取精神和良好心理素质;
3、经历观察、探究等学习活动,培养尊重事实、实事求是的科学态度.
四、策略及其说明(含智慧课堂应用)
为了充分调动学生学习的积极性,本节课采用:1、翻转课堂和课前导学案结合教学法,课前利用智学平台发布微课——《椭圆概念》,让学生独立完成课前导学案,为课堂的小组合作探究交流做好基础;2、“问题-探究”小组合作学习和数学实验教学法,通过设计有效指引,用环环相扣的问题激发学生学习兴趣和调动小组合作学习将探究活动层层深入,使教师总是站在学生思维的最近发展区上.启发学生发现问题,思考问题,理解问题,解决问题.特别在椭圆的标准方程的推导过程中采用精心设计的“表格”教学法,类比学生熟悉的圆的方程的推导方法来推导出不熟悉的新知识;3、利用智慧课堂平台,把课堂上的五个问题的反馈练习进行精准立即反馈学生掌握情况,及时开展有针对性的辅导,从而有效的对本节的重点与难点进行突破.
五、教学基本流程
课前观看微课《椭圆概念》→ 课前导学案(5个问题)→课堂小组交流课前导学案并进行数学实验→小组展示课前导学案的成果(“定性”认识椭圆)→问题1(完成表格,类比圆的方程推导方法,推导椭圆的方程)→问题1.1、1.2、1.3(对表格知识运用的练习反馈,利用智慧平台及时精准反馈掌握情况)→问题2:对椭圆标准方程的理解(利用智慧平台及时精准反馈掌握情况)→问题3:能根据条件写出椭圆的标准方程→达标训练(利用智慧平台及时精准反馈掌握情况)→课堂小结(学生归纳小结、教师评价)
六、教学过程
课前导学案:
问题1:类比直线方程的推导方法,推导出圆的方程?
直线的点斜式方程推导
圆的方程推导
几何